Effect of nano Zinc Oxide on gas permeation through mixed matrix poly (Amide-6-b-Ethylene Oxide)-based membranes

Authors

  • Mahdi Sheikh Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
  • Morteza Afsari Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Ave., Kashan, Iran
  • Morteza Asghari Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran|Separation Processes Research Group (SPRG), Department of Engineering, University of Kashan, Kashan, Iran
Abstract:

Poly (amide-6-b-ethylene oxide)/Zinc Oxide (PEBA/ZnO) mixed matrix membranes were fabricated using ethanol/water as solvent by solvent casting method. The concentration of ZnO in membrane was set to 0.1 wt.% and the synthesized membranes were characterized by AFM and FTIR. Effects of ZnO nanoparticle on CO2, CH4 and N2 permeabilities, and CO2/N2 and CO2/CH4 selectivities of the membranes were investigated at the ambient temperature and pressure range of 4–12 bar. The results revealed that the CO2 permeability of the nano-composite membrane increased 158 % with pressure, from 54.08 barrer (at 4 bar) to 139.59 barrer (at 12 bar). Furthermore, CO2 permeability for the nano-composite membrane was higher than neat polymeric membrane. The PEBA/ZnO nano-composite membranes thus provide a promising potential for CO2/N2 and CO2/CH4 separation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide

In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...

full text

Effect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation

Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...

full text

Pure and Modified Co-Poly(amide-12-b-ethylene oxide) Membranes for Gas Separation Studied by Molecular Investigations

This paper deals with a theoretical investigation of gas transport properties in a pure and modified PEBAX block copolymer membrane with N-ethyl-o/p-toluene sulfonamide (KET) as additive molecules. Molecular dynamics simulations using COMPASS force field, Gusev-Suter Transition State Theory (TST) and Monte Carlo methods were used. Bulk models of PEBAX and PEBAX/KET in different copolymer/additi...

full text

Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(vinyl pyrrolidone): synthesis and characterization.

Pluronic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers are grafted with poly(vinyl pyrrolidone) by free radical polymerization of vinyl pyrrolidone with simultaneous chain transfer to the Pluronic in dioxane. This modified polymer has both thermal responsiveness and remarkable capacity to interact with a wide variety of hydrophilic and hydrop...

full text

Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.

The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic po...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  31- 39

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023